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Abstract 
Non-integer rational numbers, such as fractions and decimals, 
pose challenges for learners, both in conceptual 
understanding and in performing mathematical operations. 
Previous studies have focused on tasks involving access and 
comparison of integrated magnitude representations, showing 
that adults have less precise magnitude representations for 
fractions than decimals. Here we show the relative 
effectiveness of fractions over decimals in reasoning about 
relations between quantities. We constructed analogical 
reasoning problems that required mapping rational numbers 
(fractions or decimals) onto pictures depicting either part-
whole or ratio relations between two quantities. We also 
varied the ontological nature of the depicted quantities, which 
could be discrete, continuous, or continuous but parsed into 
discrete components. Fractions were more effective than 
decimals for reasoning about discrete and continuous-parsed 
(i.e., discretized) quantities, whereas neither number type was 
particularly effective in reasoning about continuous 
quantities. Our findings show that, when numbers serve as 
models of quantitative relations, the ease of relational 
mapping depends on the analogical correspondence between 
the format of rational numbers and the quantity it models.  
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Introduction 

Mathematical Understanding as Relational 
Reasoning 
Mathematics is in essence a system of relations among 
concepts based on quantities. A core problem with math 
education, particularly in the United States, is that greater 
focus is placed on execution of mathematical procedures 
than on understanding of quantitative relations (Richland, 
Stigler & Holyoak, 2012; Stigler & Hiebert, 1999; Rittle-
Johnson & Star, 2007). An early manifestation of this 
problem involves teaching of non-integer rational numbers 
in the standard curriculum—typically, first fractions and 
subsequently decimals. Students often leave middle-school 
(and often enter community college: see Stigler, Givvin & 
Thompson, 2010; Givvin, Stigler & Thompson, 2011) 

without having grasped how fractions relate to decimals, or 
how either number type relates to integers. This conceptual 
disconnection in turn contributes to a compartmentalization 
of mathematical operations (e.g., multiplication of fractions 
is treated as unrelated to multiplication of integers; Siegler 
et al., 2011; Siegler & Pyke, 2012). 

Although mathematical relations are typically construed 
as internal to the formal system of mathematics, the 
application of mathematics to real-world problems also 
depends on grasping relations between mathematical 
concepts and the basic ontological distinctions among the 
concepts to which mathematics must be applied. Rather than 
treating mathematical concepts as purely formal, both 
children and adults are naturally guided by a process of 
semantic alignment, which favors mapping certain 
mathematical concepts (and their associated operations) 
onto certain conceptual types. Bassok, Chase and Martin 
(1998) demonstrated that the basic mathematical operations 
of addition, subtraction, multiplication, and division are 
typically conceptualized within a system of relations 
between mathematical values and objects in the real world. 
Specific mathematical operators are semantically aligned 
with particular relationships among real-world objects. For 
example, addition is aligned with categorical object 
relations (e.g., people find it natural to add two apples plus 
three oranges, because both are subtypes of a common 
category, fruit), whereas division is aligned with functional 
object relations (e.g., a natural problem would be to divide 
ten apples between two baskets). Semantic alignment has 
been demonstrated with both children and adults (e.g., 
Martin & Bassok, 2005), and for many adults the process is 
highly automatic (Bassok, Pedigo, & Oskarsson, 2008). 
Although natural semantic alignments are implicitly 
acknowledged in the construction of textbook word 
problems (Bassok et al., 1998), teachers seldom discuss 
these alignments with their students. This gap may 
contribute to the difficulty of conveying how and why 
mathematical formalisms “matter” in dealing with real-
world problems. 
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Discreteness Versus Continuity 
A particularly important ontological distinction relevant to 
mathematical modeling involves the nature of quantities, 
which can be viewed as either discrete or continuous. 
Roughly, some entities are viewed as comprising a set of 
individual objects (e.g., a number of apples in a basket), 
whereas others are viewed as a continuous mass without 
individuation (e.g., a bucket of water). Although continuous, 
as well as, discrete quantities can be subdivided, in the case 
of continuous quantities the divisions are arbitrary in the 
sense that they do not isolate conceptual parts (e.g., one 
could distinguish between subsets of red and green apples in 
a basket by saying that 2/3 of the apples are red and 1/3 are 
green, but there is no psychological difference between the 
water contained in 2/3 of a bucket and in the complementary 
1/3 of the bucket). Importantly, discreteness versus 
continuity is a distinction based fundamentally not on 
physics, but on psychology. For example, a pile of sand is 
viewed as a continuous quantity even though we know it is 
composed of individual grains, because those units are too 
small and interchangeable to be typically viewed as 
“important”. The impact of this basic ontological distinction 
has been documented both in young babies (e.g., Spelke, 
Breilinger, Macomber, & Jacobson, 1992) and in adults 
(Bassok & Olseth, 1995). For example, Bassok and Olseth 
found that college students viewed an increase in attendance 
at an annual conference as discrete (since it is based on a 
change between magnitudes associated with two discrete 
events well-separated in time), but viewed an annual 
increase in a city’s population growth as continuous (since it 
is based on changes stemming from the psychologically-
constant process of gaining and losing undifferentiated 
individual residents). 

The ontological distinction between discreteness and 
continuity underlies the linguistic distinction between count 
and mass nouns, which is syntactically important in English 
and many other natural languages (Bloom & Wynn, 1997). 
Infants and young children are able to make distinctions 
among continuous quantities (Clearfield & Mix, 2001; 
Fiegenson, Carey & Spelke, 2002).  However school-aged 
children have an advantage when performing operations 
with discrete quantities (e.g., counting; Gelman, 1993) over 
performing operations with their continuous counterparts 
(e.g., measurement in general; Nunes, Light & Mason, 
1993). Indeed, measurement of continuous quantities 
depends on the introduction of arbitrary equal-sized units, 
which serve to parse a continuous whole into countable 
subparts (e.g., a continuous length can be broken down into 
some number of inches or centimeters). The ability to 
discretize continuous concepts (as contrasted with the lack 
of a natural operation to make discrete concepts continuous) 
leads to asymmetries in transfer of mathematical operations. 
For example, college students can transfer the equation for 
calculating the sum of an arithmetic progression (discrete 
concept) to solve a physics problem requiring solving for 
final velocity after constant acceleration (continuous 
concept), but find transfer in the opposite direction 

(continuous to discrete) nearly impossible (Bassok & 
Holyoak, 1989; Bassok & Olseth, 1995). 

Fractions as Relational Representations 
As the first non-integer number type introduced to 
elementary-school students, fractions pose particular 
challenges. Research indicates that children have difficulty 
integrating fractions into their already well-established 
understanding of whole numbers (Staflyidou & Vosniadou, 
2004; Vamvakoussi & Vosniadou, 2010; Ni & Zhou, 2005), 
and even adults at community colleges seem to lack 
fundamental understanding of how to use fractions (Stigler 
et al., 2010). Research on understanding fractions has 
primarily focused on the ability to grasp and manipulate 
their integrated magnitude value associated with the a/b 
form. Although adults can compare fractions based on 
integrated magnitudes (Schneider & Siegler, 2010), this 
process is very slow and error-prone relative to performing 
the same task with decimal equivalents (DeWolf, Grounds, 
Bassok & Holyoak, in press). The difficulty of making 
magnitude comparisons with fractions presumably reflects 
their bipartite structure (numerator divided by denominator), 
which makes them both formally and conceptually distinct 
from integers. In contrast, decimals have a unitary structure 
more similar to integers (though not identical; Cohen, 
2010). 

However, even though the internal structure of fractions 
apparently hinders access to precise integrated magnitudes, 
this same structure may facilitate understanding of key 
relations. In particular, the a/b form can be aligned with the 
concepts underlying relations such as part/whole, subset/set, 
ratio, and rate. When children are first taught the concept of 
a fraction, some type of pictorial representation is often 
provided, such that each of the two values in the fraction are 
structurally aligned with two separate elements in the 
picture. For example, take the very common example of 
cutting up a pizza pie into pieces. A child might be taught 
that 4/5 is equivalent to 4 slices of a pizza pie that is divided 
into 5 slices. This type of mapping is also encouraged with 
verbal examples (e.g., 4 out of every 5 dentists recommend 
a certain toothpaste). Such instructional practices highlight 
the relational nature of fractions and encourage children to 
reason about fractions relationally.  

We propose that semantic alignment will also modulate 
people’s understanding of fractions. Fractions seem 
particularly appropriate as models of relations between sets 
of discrete elements. The representations typically used to 
teach fractions focus on discrete countable units that can 
map to the numerator and denominator values. For example, 
the pizza is sliced into exactly the number of pieces in the 
denominator before the numerator pieces are counted up.  
Rapp and Bassok (in preparation) reviewed a math textbook 
series and found that very rarely are students encouraged to 
think about fractions with continuous representations, such 
as a number line. In fact, continuous measures (e.g., length, 
weight) are almost exclusively represented with decimals. 
Rapp and Bassok also found that, consistent with this 



training, college students show a preference for using 
fractions rather than decimals to describe relations between 
discrete quantities, and use decimals to describe magnitudes 
of continuous quantities.  

Analogical Reasoning with Quantitative Relations 
Our study was designed to test the hypothesis that, due to 
their relational structure (a/b), fractions are better suited 
than decimals for representing relations between countable 
quantities. To this end, we compared analogical reasoning 
with either fractions or decimals, while varying the 
ontological distinction between discrete and continuous 
concepts. Figure 1 shows examples of variations in 
discreteness versus continuity. The pictorial stimuli were 
based on discrete elements (top), continuous rectangles 
(bottom), or continuous rectangles parsed into discrete units 
(middle). We hypothesized that semantic alignment would 
yield higher accuracy and faster response times for solving 
analogies using fractions rather than decimals for the 
discrete and continuous-parsed pictures. The fraction 
advantage was predicted to disappear or even reverse for the 
continuous pictures, where the semantic alignment is most 
difficult.  

Method 

Participants 
Participants were 52 undergraduates at the University of 
California, Los Angeles (mean age = 21; 30 females) who 
received course credit, randomly assigned in equal numbers 
to the two between-subjects conditions. 

Materials and Design 
The study was a 2 (number type: fractions vs. decimals) X 2 
(relation type: ratios vs. part/whole fractions) X 3 (picture  

type: continuous, continuous-parsed, discrete) design, with 
number type as a between-subjects factor and relation type 
and picture type as within-subjects factors. 

The analogy problems were constructed using each of the 
three ontological types illustrated in Figure 1: discrete, 
continuous-parsed, and continuous.  An example problem 
appears in Figure 2. These analogy problems were in the 
format A:B :: C:D vs. D’, where the source analog (A:B) 
consisted of a picture and a number (fraction or decimal). 
The task required making a choice of the correct number to   
complete the target analog. The number type was always the 
same across the source and target.    

Solving an analogy problem required first identifying the 
relationship in the A picture characterized by the number 
given as B. This relationship could be part-whole or a ratio 
between two parts. In Figure 2, the A picture indicates 4 
green units out of a total of 6, making a part-whole relation 
of 4/6 (.67 in a matched problem using decimals). An 
alternative ratio relation in Figure 2 is based on the units of 
red relative to green (i.e., 2/4, or .50 in decimal notation). 
Once the higher-order relation between A and B was 
extracted, the solution required identifying the same relation 
type in target picture C, and choosing the corresponding 
number as D term. D’ mapped to the alternative 
relationship.   

As Figure 2 illustrates, the same two colors were used in 
the A and C pictures, and the color relationship was 
maintained, such that the same color mapped to the same 
part of the relation in both A and C. This constraint served 
to identify which part (lesser or greater) mapped to the 
numerator in a ratio relation.  Color assignments varied 
across trials, so the same color might indicate the lesser 
subset on one trial and the greater subset on another. The 
actual test trials contained only red and green colors   
(practice trials were given that had yellow and brown 
colors).  The discrete items were circles, squares, crosses, 
trapezoids, and cloud-like shapes. Continuous and 
continuous-parsed items differed in width, height and 

Figure 2: Example of an analogy problem (part/whole 
fraction trial with continuous-parsed pictures). 
 

Figure 1: Examples of types of pictures used in analogy 
problems. 
 



orientation (vertical or horizontal).  For each trial, the source 
and target were randomly assigned for each participant so 
that the only thing that was consistent between the two was 
the higher-order relationship (ratio or part/whole) and the 
color mapping.  The fractions and decimals were always 
less than one and decimals were shown rounded to two 
decimal places.   

Procedure 
Stimuli were displayed with Macintosh computers using 
Superlab 4.5, and response times and accuracy were 
recorded. Extensive instructions and practice was provided 
prior to beginning the test trials.  Participants were told that 
there were two different types of relations between the 
pictures and values.  For the ratio relationship, participants 
were shown a picture with 1 O and 2 X’s. For the fractions 
condition this was explained as “1/2 amount of O’s per 
amount of X’s;” for the decimals condition it was explained 
as “.50 amount of O’s per amount of X’s.”  The part/whole 
relationship was represented with a picture of 2 O’s and 3 
X’s.  For the fractions condition this was explained as “2/5 
of the total is the amount of O’s;” for the decimal condition 
it was explained as “.40 of the total is the amount of O’s.”  
The first of these explanations of the ratio and part/whole 
relations was shown with discrete items. The following 
screen showed the same values paired with continuous-
parsed pictures.  A third screen showed the same values 
paired with continuous pictures. 
   After this introduction, participants completed an example 
trial in which they were shown the source (A:B), asked to 
figure out the type of relation (ratio or part/whole) in their 
head, and press the space bar.  After the space bar was 
pressed, the target (C:D vs. D’) was shown on the screen 
below the source so that the two components were on the 
screen simultaneously. Participants were asked to select 
which of two numbers (D or D’) shared the same 
relationship with the picture as the relationship provided in 
the source. Half of the time, D appeared on the right side of 
the screen.  They made their selection by pressing the z key 

for the number shown on the left and the m key for the 
number shown on the right.  The z and m keys were labeled 
with “L” and “R”, respectively, so that participants could 
remember which key went with each number. After 
completing the initial example trial, participants were shown 
the correct answer, with an explanation of which 
relationship was shared between the source and target. 

Participants then completed 12 practice trials.  Feedback 
was given for incorrect trials, in the form of a red “X” on  
the screen.  After the practice trials had been completed, a 
screen was displayed informing participants that the actual 
test trials were beginning. For each trial, the source was 
shown, then the participant pressed the spacebar when they 
determined the relationship. The target was then shown in 
addition to the source.  Feedback was continued for 
incorrect trials.  There were 72 test trials (12 for each of the 
6 within-subjects conditions). The specific pictures, 
numbers, and pairings used in the test trials were different 
from those used in practice trials.  Relation types and picture 
types were shown in a different random order for every 
participant.  

Results 
Accuracy and mean response time (RT) on correct trials 
were computed for each condition for each participant.  A 
mixed factors ANOVA was used to compare differences in 
RT and accuracy.  No reliable overall differences were 
obtained between the two relation types (part-whole and 
ratio) on either measure; hence all results are reported after 
collapsing across this variable. Figure 3 presents the pattern 
of performance based on accuracy, and Figure 4 presents the 
pattern based on mean correct RT. Both dependent measures 
revealed an overall advantage for solving analogies based 
on fractions rather than decimals, with the advantage most 
pronounced for pictures of discrete quantities. For accuracy, 
both number type, F(1, 50) = 8.65, p = .005), and picture 
type, F(2, 49) = 33.52, p < .001, were highly reliable, as was 
the interaction of the two factors, F(2, 49) = 25.20, p < .001.   
Planned comparisons indicated that accuracy was higher for 
fractions than decimals for the discrete condition (87% vs. 

Figure 4: Response times for correctly solving analogy 
problems using fractions or decimals for each quantity type. 

 

Figure 3: Percent accuracy for solving analogy problems 
using fractions or decimals for each quantity type. 
 



66%; t(50) = 5.38, p < .001) and the continuous-parsed 
condition (80% vs. 67%; t(50) = 3.17, p = .003), but did not 
differ for the continuous condition (61% vs. 65%; t(50) = 
.93, p = .36). 

RTs were measured from the onset of the source display 
on the screen to the selection of the target answer. Response 
times for incorrect answers were excluded from analyses.  
In addition, outliers were trimmed to exclude any times that 
were greater than three standard deviations from the mean 
(roughly 2% of response times). As shown in Figure 4, the 
RT pattern closely resembled that for accuracy. In 
particular, there was a reliable interaction between number 
type and picture type, F(2, 49) = 16.19, p < .001. Planned 
comparisons indicated that RTs were faster with fractions 
than decimals for the discrete condition (8.5 s vs. 12.8 s; 
t(50) = 2.70, p = .01), with a strong trend for the continuous-
parsed condition (8.3 s vs. 11.2 s; t(50) = 1.87, p = .067).  
RTs for fractions versus decimals did not differ reliably for 
the continuous condition (9.3 s vs. 7.7 s; t(50) = 1.45, p > 
.15). 

 
Discussion 

 
The results of the current study demonstrated an overall 
advantage for fractions over decimals in a relational task. 
Moreover, this advantage was moderated by the ontological 
nature of the depicted quantities. Participants were better 
able to extract relationships for discrete and continuous-
parsed pictures when fractions were mapped to the 
quantities, rather than decimals. There was no difference in 
performance on the continuous pictures between fractions 
and decimals.  This pattern suggests that fractions are 
semantically-aligned with relations between countable, 
discrete quantities. Performance with decimals was 
relatively flat (and generally poorer) for all picture types.  

These results support two basic claims about semantic 
alignment for specific types of quantities. First, people can 
and do align quantities with numbers. Second, ease of 
alignment depends on two factors: the type of number 
format (fractions vs. decimals), and the type of quantities 
(countable, i.e., discrete and continuous-parsed, vs. 
continuous).  

The central difference between fractions and decimals is 
that their formats provide an explicit representation of 
relations (fractions) or of relation magnitudes (decimals).  
That is, fractions have a bipartite structure (a/b) that 
expresses a specific relationship between two natural 
numbers, a and b.  Decimals represent the magnitudes of 
such fractional relations.  This difference has important 
implications for how people align these numbers with 
specific quantities.  For fractions, alignment should be 
simple when the numerator and denominator can be readily 
mapped onto distinct subsets, A and B.  Our results show 
that this is indeed the case when A and B are comprised of 
countable entities, depicted by the discrete and continuous-
parsed picture types.  However, alignment should be 
difficult when A and B are continuous quantities, as the task 

becomes more like a magnitude assessment.  Despite the 
explicit relation (a/b), it is difficult to assess the magnitude 
of A and the magnitude of B, which makes the overall 
mapping more complicated.  Decimals represent magnitudes 
of relations without specifying the relational parts. Hence, 
mapping to the A and B sets is difficult irrespective of 
whether the sets are shown as discrete or continuous 
quantities. 

The current pattern of results is consistent with the 
schooling experience of our participants (Rapp & Bassok, in 
preparation). Typically, students learn about fractions from 
part/whole and set/subset examples (Sophian, 2007; Mack, 
1993). However, the goal of such examples is not to help 
children understand that fractions represent relations. 
Rather, they are provided to help children understand the 
existence of values smaller than 1. That is, as discussed 
earlier, the main focus of initial instruction about fractions is 
to convey their magnitude. This focus is problematic 
because, while fractions are well-suited for representation of 
relations, they are poorly suited for representation of 
magnitudes (DeWolf et al., in press; Stigler et al., 2010). 
Our findings also suggest that if decimals were taught prior 
to fractions, children might have a better opportunity to 
learn about magnitudes smaller than 1. Because decimals 
have a unitized format, like whole numbers, they might 
provide an easier opportunity for children to master the idea 
of magnitudes smaller than 1. Fractions, then, might be 
taught later than decimals with an emphasis on their status 
as a relationship between two natural numbers. The 
magnitude of such relational representations would not be 
limited to values smaller than 1 (ratios). 

Interestingly, Moss and Case (1999) implemented a 
curriculum with 4th graders in Canada that reorganized the 
order of rational number instruction.  Children were first 
taught percentages (in the context of volumes and on 
number lines), then decimals, and lastly fractions.  Fractions 
were explained simply as another way to represent a 
decimal.  By contrast, typical curricula describe teaching 
decimals as another way to represent a fraction.  Moss and 
Case found that children taught number types in this novel 
sequence suffered less interference from whole-number 
strategies when using other rational numbers, and achieved 
a deeper understanding of them.  Though Moss and Case 
did not emphasize fractions in the relational context we have 
discussed here, it seems that introducing the idea of 
magnitudes less than 1 with decimals rather than fractions 
may be preferable. 

In summary, understanding how non-integer rational 
numbers align to specific types of quantities, and how 
format can affect ease of semantic alignment, has important 
implications for how we conceptualize and teach fractions 
and decimals.  It is important to foster understanding of 
fractions beyond simple algorithmic procedures, and to 
bolster conceptual understanding in order to address the 
difficulties children and adults face in understanding 
fractions. 
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